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A model of carbon dioxide dissolution
and mineral carbonation kinetics
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The kinetics of the dissolution of carbon dioxide in water and subsequent chemical
reactions through to the formation of calcium carbonate, a system of reactions integral to
carbon sequestration and anthropogenic ocean acidification, is mathematically modelled
using the mass action law. This group of reactions is expressed as a system of five
coupled nonlinear ordinary differential equations, with 14 independent parameters. The
evolution of this system to equilibrium at 25◦C and 1 atm, following an instantaneous
injection of gaseous carbon dioxide, is simulated. An asymptotic analysis captures the
leading-order behaviour of the system over six disparate time scales, yielding expressions
for all species in each time scale. These approximations show excellent agreement with
simulations of the full system, and give remarkably simple formulae for the equilibrium
concentrations.
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1. Introduction

The quantity of carbon dioxide in the atmosphere has increased by about a third
since the start of the Industrial Revolution in the late eighteenth century, from
around 280 parts per million by volume (ppmv) in 1850 to around 380 ppmv
to date, and is currently rising by about 1.7 ppmv per year (Lal 2008). When
carbon dioxide reacts with water, carbonic acid is formed, from which hydrogen
ions dissociate, increasing the acidity of the system. Therefore, in addition to
any greenhouse effect, anthropogenic carbon dioxide emissions to the atmosphere
can increase the acidity of the atmosphere and precipitation. Around 30–40% of
anthropogenic carbon dioxide emitted to the atmosphere dissolves into the oceans
(Millero 1995), where the reaction with sea water has increased ocean acidity
by 0.1 pH units since pre-industrial times (Intergovernmental Panel on Climate
Change (IPCC) 2007). Ocean ecosystems are affected both through acidification
and by associated reductions in carbonate ion concentrations (Orr et al. 2005).
Around 20 per cent of anthropogenic carbon dioxide emissions to the atmosphere
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1266 M. J. Mitchell et al.

are absorbed by the terrestrial biosphere (Feely et al. 2004), and the reaction
between the absorbed carbon dioxide and soil moisture can alter soil acidity.
Carbon dioxide emissions to the atmosphere can therefore increase the acidity of
land, sea and air.

One promising solution to reduce CO2 emissions is carbon capture and storage
(CCS). There are a number of options for long-term storage, of which saline
aquifers have the largest capacity (IPCC 2005) and may therefore have the
most potential. Saline aquifers are very large deep porous geological formations
saturated with brine, and are often rich in different metals. Although the initial
principal trapping mechanism is often an impermeable cap rock above the
underground reservoir (‘structural trapping’), solubility trapping and mineral
trapping are also important in the longer term (IPCC 2005). Solubility trapping
occurs when carbon dioxide dissolves into the brine solution, and mineral trapping
occurs when the dissolved carbon dioxide reacts with the water to eventually
form stable carbonate compounds such as calcium carbonate and magnesium
carbonate (Lagneau et al. 2005; Druckenmiller et al. 2006). Long-term storage
may also include the generation of stable carbonate compounds in an industrial
process above ground, or the injection of carbon dioxide into the deep oceans.

Among the numerous factors to be taken into account in developing
computational models of CCS, the chemical reactions that take place between
injected CO2, water and the various metals which may be present are
fundamental. These interactions are strongly coupled with the associated
transport processes, for example, via precipitates building up in the pore spaces
and affecting permeability, or dissolved carbon dioxide changing the density of
groundwater leading to buoyant fluxes. A variety of sophisticated modelling and
simulation packages have been developed for fluid flows with chemical reactions,
including TOUGH2/TOUGHREACT (Xu et al. 2006), PHREEQC (Parkhurst &
Appelo 1999), FEHM (Zyvoloski et al. 1991), GEOCHEMIST’S WORKBENCH (Bethke
2002) and CHILLER (Reed 1982; Reed & Spycher 1998). In order to provide
improved theoretical understanding of the kinetics of the dissolution of CO2
in water and the subsequent chemical reactions, and to offer systematic
approximations that may be exploited in multi-scale modelling tools, this paper
seeks to simplify the complex kinetic modelling of these key reactions, by using
the method of matched asymptotic expansions to identify the distinct time scales
over which the reactions take place and to provide simple expressions for the
resulting dynamic and equilibrium concentrations. We consider the following
system of reversible chemical reactions (IPCC 2005), where the system is initially
at equilibrium with all species at low concentrations compared with water, and
is then subject to an instantaneous injection of gaseous carbon dioxide:

CO2(g) ⇐⇒ CO2(aq), (1.1a)
CO2(aq) + H2O ⇐⇒ H2CO3, (1.1b)

H2CO3 ⇐⇒ H+ + HCO−
3 , (1.1c)

HCO−
3 ⇐⇒ H+ + CO2−

3 , (1.1d)

Ca2+ + CO2−
3 ⇐⇒ CaCO3(aq) (1.1e)

and CaCO3(aq) ⇐⇒ CaCO3(s). (1.1f )

Proc. R. Soc. A (2010)
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A model of CO2 dissolution 1267

In reaction (1.1a), gaseous carbon dioxide is dissolved in water, reacting to
form carbonic acid (1.1b). Hydrogen ions dissociate from the carbonic acid, to
give bicarbonate (1.1c), and then a carbonate ion (1.1d ), which then reacts with
a calcium cation to form calcium carbonate (1.1e). Some of this calcium carbonate
precipitates out of the solution (1.1f ). We do not include any further reactions
with buffers that remove some of the hydrogen ions from the system; this removal
will only drive the system of reactions further forward, and so result in more
hydrogen being produced. We therefore obtain the minimum quantity of hydrogen
ions that is generated.

We construct a mathematical model for the kinetics of this system of
reactions using the mass action law and known rate and equilibrium constants.
Although the model involves coupled fifth-order nonlinear ordinary differential
equations (ODEs), our asymptotic approach yields remarkably simple and
accurate approximations for both transient and equilibrium concentrations. This
is possible because the rate constants differ by many orders of magnitude, allowing
the essence of the system’s behaviour to be captured by much-simplified sets of
equations. Our analysis identifies six different time scales within the system, each
exhibiting a different dominant balance of terms representing locally rate-limiting
reactions. Approximations are matched between time scales and are validated
against numerical simulations. We anticipate that the predictions of our study
will be of value in simulations relating to CCS or ocean acidification involving
processes that overlap with the slower time scales under consideration here; our
results provide useful approximations of the more rapid reaction processes and
will help reduce the computational cost of resolving reactions with rapid rate
constants that lead to numerical stiffness.

We present the governing equations and parameters in §2, and demonstrate the
accuracy of asymptotic approximations against simulations in §3. The asymptotic
analysis is outlined in §4; technical details appear in appendix A. Section 5
contains a summary of the key predictions and an explanation of their range
of validity.

2. Mathematical modelling

(a) Full dimensional model

Reactions (1.1a–e) are assumed to follow the mass action law, with the additional
assumptions that water is abundant, that the components are always well mixed
and that the temperature, pressure, salinity and ionic strength are constant and
uniform, and any impact upon the rates of reaction caused by varying one or more
of these factors can be captured by varying the rate constants appropriately. It
is also assumed that CO2(aq) remains below carbon dioxide’s solubility limit
(without the need to impose a maximum value on its concentration), and that
all the CaCO3 that is formed in solution remains dissolved until its concentration
reaches calcium carbonate’s molar solubility limit S ; thereafter, it precipitates
instantaneously. We also assume that the reactions take place in a homogeneous
environment (so any nucleation that occurs will also be homogeneous).

The kinetics of equations (1.1) is therefore modelled by the following rate
equations, where t is time (in seconds), [ ] denotes concentration (measured in
moles per litre, or M), [CaCO3] = [CaCO3(aq)] + [CaCO3(s)], k1 to k5 and k−1 to
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1268 M. J. Mitchell et al.

k−5 are, respectively, the forward and reverse rate constants for the five reactions
(1.1a–e) and H (.) is the Heaviside step function (H (x) = 1 if x > 0, H (x) = 0
if x < 0):

d[CO2(g)]
dt

= −k1[CO2(g)] + k−1[CO2(aq)], (2.1a)

d[CO2(aq)]
dt

= k1[CO2(g)] − k−1[CO2(aq)] − k2[CO2(aq)] + k−2[H2CO3],
(2.1b)

d[H2O]
dt

= −k2[CO2(aq)] + k−2[H2CO3], (2.1c)

d[H2CO3]
dt

= k2[CO2(aq)] − k−2[H2CO3] − k3[H2CO3] + k−3[H+][HCO−
3 ],

(2.1d)
d[H+]

dt
= k3[H2CO3] − k−3[H+][HCO−

3 ] + k4[HCO−
3 ] − k−4[H+][CO2−

3 ],
(2.1e)

d[HCO−
3 ]

dt
= k3[H2CO3] − k−3[H+][HCO−

3 ] − k4[HCO−
3 ] + k−4[H+][CO2−

3 ],
(2.1f )

d[CO2−
3 ]

dt
= k4[HCO−

3 ] − k−4[H+][CO2−
3 ] − k5[Ca2+][CO2−

3 ]
+ k−5[CaCO3(aq)], (2.1g)

d[Ca2+]
dt

= −k5[Ca2+][CO2−
3 ] + k−5[CaCO3(aq)], (2.1h)

d[CaCO3(aq)]
dt

= (k5[Ca2+][CO2−
3 ] − k−5[CaCO3(aq)])H (S − [CaCO3]) (2.1i)

and
d[CaCO3(s)]

dt
= (k5[Ca2+][CO2−

3 ] − k−5[CaCO3(aq)])H ([CaCO3] − S).

(2.1j)

Equations (2.1) can be simplified by removing the explicit distinction between
dissolved and precipitated CaCO3 and by imposing mass-conservation constraints
consistent with the initial conditions. From equations (2.1i,j),

d[CaCO3]
dt

= k5[Ca2+][CO2−
3 ] − k−5[CaCO3(aq)], (2.2)

equations (2.1g,h) and (2.2) can alternatively be written as

d[CO2−
3 ]

dt
= k4[HCO−

3 ] − k−4[H+][CO2−
3 ] − k5[Ca2+][CO2−

3 ]
+ k−5 min{S , [CaCO3]} (2.3a)

and

d[Ca2+]
dt

= −d[CaCO3]
dt

= −k5[Ca2+][CO2−
3 ] + k−5 min{S , [CaCO3]}. (2.3b)
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A model of CO2 dissolution 1269

Therefore, equivalently to equations (2.1), the system comprises equations
(2.1a–f ) and (2.3), and whenever a more detailed split between aqueous and
solid CaCO3 is required, this is given in terms of the solubility limit S by

[CaCO3(aq)] = min{[CaCO3], S} and [CaCO3(s)] = max{0, [CaCO3] − S}.
(2.4)

The four different elements within this system (C, O, H and Ca) must be
conserved throughout the system’s evolution, and so the system of nine equations
has four constraints and five degrees of freedom. Noting that equations (2.1h–j)
sum to zero, it follows that

[Ca2+] + [CaCO3] = [Ca2+]0 + [CaCO3]0
(where subscript zero indicates an initial value), denoting conservation of calcium.
Similarly, conservation of carbon, hydrogen and oxygen are, respectively, given by

[CO2(g)] + [CO2(aq)] + [H2CO3] + [HCO−
3 ] + [CO2−

3 ] + [CaCO3]
= [CO2(g)]0 + [CO2(aq)]0 + [H2CO3]0 + [HCO−

3 ]0 + [CO2−
3 ]0 + [CaCO3]0,

2[H2O] + 2[H2CO3] + [H+] + [HCO−
3 ]

= 2[H2O]0 + 2[H2CO3]0 + [H+]0 + [HCO−
3 ]0

and

2[CO2(g)] + 2[CO2(aq)] + [H2O] + 3[H2CO3] + 3[HCO−
3 ] + 3[CO2−

3 ]+3[CaCO3]
= 2[CO2(g)]0 + 2[CO2(aq)]0 + [H2O]0 + 3[H2CO3]0 + 3[HCO−

3 ]0
+ 3[CO2−

3 ]0 + 3[CaCO3]0.
By constructing an alternative formulation of the four constraints, such that

[CO2(g)], [H+], [CaCO3] (denoted X , Y and Z , respectively) and [H2O] are
expressed as functions of the remaining five species and the initial concentrations,
the system (2.1a–f ) and (2.3) simplifies to the following system of five coupled
equations:

d[CO2(aq)]
dt

= k1X − k−1[CO2(aq)] − k2[CO2(aq)] + k−2[H2CO3], (2.5a)

d[H2CO3]
dt

= k2[CO2(aq)] − k−2[H2CO3] − k3[H2CO3] + k−3Y [HCO−
3 ], (2.5b)

d[HCO−
3 ]

dt
= k3[H2CO3] − k−3Y [HCO−

3 ] − k4[HCO−
3 ] + k−4Y [CO2−

3 ], (2.5c)

d[CO2−
3 ]

dt
= k4[HCO−

3 ] − k−4Y [CO2−
3 ] − k5[CO2−

3 ][Ca2+] + k−5 min{S , Z }
(2.5d)

and
d[Ca2+]

dt
= −k5[CO2−

3 ][Ca2+] + k−5 min{S , Z }, (2.5e)

Proc. R. Soc. A (2010)
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1270 M. J. Mitchell et al.

Table 1. Parameter estimates at 25◦C and 1 atm.

parameter magnitude source

k1 1 × 1010 s−1 Stumm & Morgan (1996)
k−1 1 × 1010 s−1 Stumm & Morgan (1996)
k2 6 × 10−2 s−1 Bond et al. (2001)
k−2 2 × 101 s−1 Pocker & Bjorkquist (1977)
k3 1 × 107 s−1 Pocker & Bjorkquist (1977)
k−3 5 × 1010 M−1 s−1 Pocker & Bjorkquist (1977)
k4 3 × 100 s−1 Warneck (1988)
k−4 5 × 1010 M−1 s−1 Warneck (1988)
k5 2 × 100 M−1 s−1 Drever (2002)
k−5 1 × 10−3 s−1 Drever (2002)
S 7 × 10−5 M Tro (2008)

where

X ≡ [CO2(g)]0 − [CO2(aq)] + [CO2(aq)]0 − [H2CO3] + [H2CO3]0
− [HCO−

3 ] + [HCO−
3 ]0 − [CO2−

3 ] + [CO2−
3 ]0 + [Ca2+] − [Ca2+]0, (2.6a)

Y ≡ [H+]0 + [HCO−
3 ] − [HCO−

3 ]0 + 2[CO2−
3 ] − 2[CO2−

3 ]0
− 2[Ca2+] + 2[Ca2+]0 (2.6b)

and Z ≡ [CaCO3]0 − [Ca2+] + [Ca2+]0. (2.6c)

This simplification reduces the number of parameters from 19 (the 10 rate
constants and nine initial concentrations) to 18.

(b) Parameter estimates and initial conditions

The system to be analysed is based on some of the shallower wells of the
Botucatu aquifer in Brazil, which has been well characterized (Meng & Maynard
2001; e.g. Wells 56, 89 and 149). These shallower wells have temperatures close to
25◦C, and so estimates of the magnitudes of the rate constants at 25◦C and 1 atm
are given in table 1. Note that k1 and k−1 are estimates based on CO2 distributing
itself ‘approximately equally between its gas phase and aqueous phase at ordinary
temperatures’ (Stumm & Morgan 1996), and reaction (1.1a) being fast in a well-
mixed scenario (Rochelle et al. 2004) and similar in speed to reaction (1.1c).
Also, k5 and k−5 are estimates based on reaction (1.1e) being relatively slow,
with K5 ≈ 1660 at 25◦C (Drever 2002). As CaCO3 dissociates to one molecule
of Ca2+ and one molecule of CO2−

3 , S (in M) is given by the square root of the
solubility product constant, which, for CaCO3 in pure water at 25◦C, is 4.96 ×
10−9 (Tro 2008).

The behaviour of the system will be illustrated with initial concentrations
[Ca2+]0 = 10 mg l−1 = 2.50 × 10−4 M, [HCO−

3 ]0 = 20 mg l−1 = 3.28 × 10−4 M and
pH = 6, i.e. [H+]0 = 10−6 M. From these three initial concentrations, the remaining
initial concentrations of the species are calculated using the fact that a reaction’s

Proc. R. Soc. A (2010)
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A model of CO2 dissolution 1271

Table 2. Initial concentrations.

initial equilibrium
species concentration (M)

[CO2(g)] 5.47 × 10−4

[CO2(aq)] 5.47 × 10−4

[H2O] 5.55 × 101

[H2CO3] 1.64 × 10−6

[H+] 1.00 × 10−6

[HCO−
3 ] 3.28 × 10−4

[CO2−
3 ] 1.97 × 10−8

[Ca2+] 2.50 × 10−4

[CaCO3] 9.84 × 10−9

equilibrium constant equals both its ratio of rate constants and its ratio of
equilibrium concentrations. For example, for reaction (1.1d ),

K4 = k4

k−4
= [H+]0[CO2−

3 ]0
[HCO−

3 ]0 , (2.7)

and so [CO2−
3 ]0 = 1.97 × 10−8 M. Similar calculations for the other four reactions

give the remaining initial equilibrium concentrations (table 2), with water’s
concentration not deviating from its large pure value. Although aquifer
conditions can be far from 25◦C, 1 atm and these chosen initial concentrations,
the results obtained here are extendable to a wider range of scenarios, as
explained in §5.

We assume that the system is perturbed by an instantaneous injection of
gaseous carbon dioxide that increases [CO2(g)] to 0.065 M. This is sufficient to
increase [CO2(aq)] to carbon dioxide’s solubility limit, which at 25◦C and 1 atm
is about 0.033 M. Any more injected CO2(g) will therefore remain undissolved,
and will not affect any of the other species. We seek the evolution of the system
to a new equilibrium.

(c) Dimensionless model

In table 3, we define dimensionless variables B, D, F , G and H , representing
deviations of concentrations from initial values, each a function of a rescaled
time variable t̄. In table 4, we define 18 dimensionless parameters, denoted with
Greek symbols, with the initial concentration of water and k−1

2 chosen to be the
arbitrary reference concentration and time scale, respectively. These parameters
are evaluated using data in tables 1 and 2 and [CO2(g)]0 = 0.065 M, and the
resulting values, spanning 23 orders of magnitude, are also given in table 4. The
parameters are also expressed as the product of a corresponding O(1) parameter
(indicated by a hat) and a power of the parameter α (= 1.95 × 108). This is a
precursor to taking the distinguished asymptotic limit α → ∞, with all hatted
parameters remaining O(1) in the limit.

Proc. R. Soc. A (2010)
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1272 M. J. Mitchell et al.

Table 3. Dimensionless variables.

variable definition

B ([CO2(aq)] − [CO2(aq)]0)/[H2O]0
D ([H2CO3] − [H2CO3]0)/[H2O]0
F ([HCO−

3 ] − [HCO−
3 ]0)/[H2O]0

G ([CO2−
3 ] − [CO2−

3 ]0)/[H2O]0
H ([Ca2+] − [Ca2+]0)/[H2O]0
t̄ k2t

Table 4. Dimensionless parameters.

parameter definition value at 25◦C, 1 atm scaling

α [CO2(g)]0k1/[H2O]0k2 1.95 × 108

β [CO2(aq)]0/[H2O]0 9.85 × 10−6 α−3/4β̂

δ [H2CO3]0/[H2O]0 2.95 × 10−8 α−1δ̂

μ [H+]0/[H2O]0 1.80 × 10−8 α−1μ̂

η [HCO−
3 ]0/[H2O]0 5.91 × 10−6 α−3/4η̂

θ [CO2−
3 ]0/[H2O]0 3.55 × 10−10

λ [Ca2+]0/[H2O]0 4.50 × 10−6 α−3/4λ̂

κ [CaCO3]0/[H2O]0 1.77 × 10−10 α−5/4κ̂

γ k1/k2 1.67 × 1011 α3/2γ̂

ν k−1/k2 1.67 × 1011 α3/2ν̂

σ k−2/k2 3.33 × 102

ψ k3/k2 1.67 × 108 αψ̂

ω k−3[H2O]0/k2 4.17 × 1013

χ k4/k2 5.00 × 101 α1/4χ̂

φ k−4[H2O]0/k2 4.17 × 1013

τ k5[H2O]0/k2 1.67 × 103 α1/2τ̂

ρ k−5/k2 1.67 × 10−2 α−1/4ρ̂

Σ S/[H2O]0 1.27 × 10−6 α−3/4Σ̂

As the initial conditions (prior to CO2 injection) have been chosen to satisfy the
equilibrium equations (as in equation (2.7)), reactions (1.1b–e) yield the following
identities:

σ ≡ β

δ
, ω ≡ ψδ

ημ
, φ ≡ χητλ

μρκ
and θ ≡ ρκ

τλ
. (2.8)

Substituting the dimensionless variables, parameters and identities (2.8) into
equations (2.5) yields the following dimensionless system, containing 14
independent parameters:

dB
dt̄

= α − γ (B + D + F + G − H ) − ν(B + β) − B + βD
δ

, (2.9a)

dD
dt̄

= B − βD
δ

− ψ(D + δ) + ψδ

ημ
(F + η)(μ + F + 2G − 2H ), (2.9b)

Proc. R. Soc. A (2010)
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A model of CO2 dissolution 1273

dF
dt̄

= ψ(D + δ) +
(−ψδ

ημ
(F + η) + χη

μ

(
τλ

ρκ
G + 1

))

× (μ + F + 2G − 2H ) − χ(F + η), (2.9c)

dG
dt̄

= χ(F + η) − χη

μ

(
τλ

ρκ
G + 1

)
(μ + F + 2G − 2H )

− τ
(
G + ρκ

τλ

)
(H + λ) + ρ min{Σ , κ − H } (2.9d)

and
dH
dt̄

= −τ
(
G + ρκ

τλ

)
(H + λ) + ρ min{Σ , κ − H }. (2.9e)

The five variables all equal zero at t̄ = 0.

3. The evolution of the system to equilibrium

Numerical integration of equations (2.5) using the parameter values given in
tables 1 and 2 (with [CO2(g)]0 = 0.065 M) yields the results shown in figure 1a.
(The evolution of calcium is given as the increase from its initial value.) As
expected, the injection of CO2(g) leads to increases in [CO2(aq)], [H2CO3], [H+]
and [HCO−

3 ]. The relative increase in [H+] is much larger than the increase in
[HCO−

3 ], as reaction (1.1d) converts some of the generated HCO−
3 into CO2−

3
and further H+. The ratio of a reaction’s concentrations is constant for any
equilibrium, so from reaction (1.1d),

[H+]0[CO2−
3 ]0

[HCO−
3 ]0 = [H+]∞[CO2−

3 ]∞
[HCO−

3 ]∞ = K4.

Therefore, a large increase in [H+] (from [H+]0 to [H+]∞) and a small increase in
[HCO−

3 ] must be balanced by a (large) decrease in [CO2−
3 ] (as shown in figure 1a),

as expected (Orr et al. 2005). Similarly, from reaction (1.1e),

[CaCO3]0
[Ca2+]0[CO2−

3 ]0
= [CaCO3]∞

[Ca2+]∞[CO2−
3 ]∞

= K5.

Therefore, a drop in [CO2−
3 ] must be balanced by an increase in [Ca2+] (as shown

in figure 1a) and a decrease in [CaCO3]. Therefore, CO2 cannot be sequestered
as CaCO3 through these reactions alone.

The evolution of the system is plotted using dimensionless variables (2.9) in
figure 1b with continuous lines, along with asymptotic approximations (dashed
lines) that will be derived below. There is close agreement between the simulations
and the approximations. For each species J (J = B, D, F , G, H ), the exponent

ΨJ ≡ d log |J |
d log t̄

(3.1)

provides a useful measure of the rate of change of each variable (as J ∝ t̄ ΨJ when
ΨJ is constant). Figure 1c shows how the ΨJ exhibit stepwise changes with time.

Proc. R. Soc. A (2010)
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Figure 1. (a) Simulation results expressed in dimensional variables, satisfying equations (2.5); (b)
simulation of the dimensionless system (2.9) (continuous lines), with leading-order approximations
from appendix B (dashed lines, where visible); and (c) the time exponent ΨJ of each species’
evolution, from simulation of equations (2.9). In each graph, the vertical lines t1–t6 indicate the
six time scales: t1 = α−3/2, t2 = α−1, t3 = α−3/4, t4 = α−1/2, t5 = α−1/4, t6 = α1/4.
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A model of CO2 dissolution 1275

The plateaux in figure 1c separate six different time scales in this system
(indicated by t1–t6 in figure 1, and discussed in more detail below): (i) CO2(aq)
evolves linearly in time (ΨB ≈ 1), and then rapidly reaches equilibrium (ΨB = 0),
the remaining species initially evolving with successively higher powers of time,
(ii) H2CO3 and HCO−

3 reach an approximately linear evolution in time (ΨD and
ΨF approach 1), with CO2−

3 (G) varying quadratically, and Ca2+ (H ) cubically
in time, although the changes are all still negligible compared with the initial
concentrations, (iii) and (iv) the rate of change of CO2−

3 declines rapidly (ΨG

falls to zero), (v) H2CO3, HCO−
3 and CO2−

3 (D, F and G) reach equilibrium
while Ca2+ evolves linearly in time (ΨH ≈ 1) and (vi) Ca2+ reaches equilibrium.

4. Asymptotic analysis

We seek asymptotic approximations of the solutions of equations (2.9) in each of
the six time scales identified above; the approximations are matched with each
other where the time scales overlap. Complete details are given in appendix A.
Briefly, in each time scale, the five variables are expressed as the product of
a corresponding O(1) variable (indicted by a hat), and an appropriate scaling
factor, given as a power of the parameter α. This parameter is chosen as it
is a measure of the quantity of injected CO2(g); as this is a nonlinear system,
different initial conditions can produce qualitatively different outcomes, and our
predictions are subject to the constraint (5.3) below. The hatted variables and
parameters (from table 4) and all their corresponding scaling factors of α are
substituted into equations (2.9), and the terms in successive powers of α−1/4 are
balanced, giving the leading-order behaviour of the system at each time scale in
the distinguished limit α → ∞ (hatted parameters in table 4 remaining O(1)).

The different leading-order approximations for each species are summarized
in appendix B, and are combined into a single plot as the dashed lines that
are graphically indistinguishable from the continuous lines in figure 1b. There is
uniformly close agreement between the simulations and these approximations for
the large, but finite, value of α chosen.

5. Results

(a) Equilibrium concentrations

The large-time limits of the leading-order approximations, given by equations
(A 3a), (A 23a–c) and (A 26), give estimates of the equilibrium concentrations,
which in dimensional terms are

[CO2(aq)]∞ ≈ [CO2(aq)]0 + [CO2(g)]0K1

K1 + 1
, (5.1a)

[H2CO3]∞ ≈ [H2CO3]0 + [CO2(g)]0K1K2

K1 + 1
, (5.1b)

[HCO−
3 ]∞ ≈ [HCO−

3 ]0
2

+
√

[HCO−
3 ]20

4
+ [CO2(g)]0K1K2K3

K1 + 1
, (5.1c)
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1276 M. J. Mitchell et al.

[CO2−
3 ]∞ ≈ K4[HCO−

3 ]∞
[HCO−

3 ]∞ − [HCO−
3 ]0 (5.1d)

and [Ca2+]∞ ≈ [Ca2+]0 + [CaCO3]0 − K5[Ca2+]0[CO2−
3 ]∞. (5.1e)

These non-trivial algebraic relationships emerge from our systematic asymptotic
analysis; their simplicity reflects the wide numerical range of dimensionless rate
constants in table 4. Equation (5.1a) shows that the proportion of injected
CO2(g) that is sequestered (i.e. dissolves into the water) is controlled only by
the dissolution constant K1 = k1/k−1; the further process of dissolved CO2 being
removed by reacting with water is less important. In the present example, with
K1 = 1, half of the injected CO2(g) dissolves in the water. The proportion of
injected and dissolved CO2 that then reacts with the water to form carbonic acid
is given simply by the ratio of this reaction’s rate constants (K2; equation (5.1b)).
From equation (5.1c), the proportion of extra carbonic acid that ends up as
bicarbonate is governed (through a quadratic relationship) by the carbonic
acid dissociation constant. For the present parameter regime, the leading-order
approximation for the final quantity of carbonate ions (5.1d) turns out to be
independent of its initial value.

The concentrations of all the remaining species can be calculated using
equations (5.1) and the conservation of mass constraints. From equations (5.1e)
and (2.6c),

[CaCO3]∞ ≈ K5[Ca2+]0[CO2−
3 ]∞ = [CaCO3]0 [CO2−

3 ]∞
[CO2−

3 ]0
,

as K5[Ca2+]0 = [CaCO3]0/[CO2−
3 ]0. Therefore, a decrease in [CO2−

3 ] must be
accompanied by a decrease in [CaCO3]. Therefore, the amount of CO2 bound to
calcium decreases as a result of these reactions. In this example, the concentration
of calcium carbonate decreases to 2.2 × 10−10 M.

Also, substituting equations (5.1d,e) into equation (2.6b), and assuming
K4, K4K5[Ca2+]0, [CO2−

3 ]0 and [CaCO3]0 are all negligible compared with
[HCO−

3 ]0 (which is true for these parameter values with error O(α−1/4)), we find

[H+]∞ ≈ [H+]0 − [HCO−
3 ]0

2
+

√
[HCO−

3 ]20
4

+ [CO2(g)]0K1K2K3

K1 + 1
, (5.2)

which equals 5.1 × 10−5 M. Therefore, with no buffers, the pH has dropped from
6 to 4.3.

(b) The six time scales

So far, the six time scales used to construct the asymptotic approximations
have been defined as powers of α. Greater insight comes from examining the rate
constants that appear in the solutions, such as the time scale t̂ = O(1/(γ̂ + ν̂))
implicit in (A 2a). The six time scales, expressed in terms of the original
dimensional quantities, are given in table 5, together with the corresponding
values at 25◦C and 1 atm. In this well-mixed scenario, CO2(aq) reaches
equilibrium within O(10−11 s), H2CO3, HCO−

3 and CO2−
3 reach equilibrium within
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A model of CO2 dissolution 1277

Table 5. Summary of the six time scales.

value at 25◦C
time scale dimensional expression and 1 atm (s)

1
1

k1 + k−1
5.0 × 10−11

2
[H+]0

k3([H+]0 + [H2CO3]0) 3.8 × 10−8

3
[CaCO3]0

k4K5[HCO−
3 ]0[Ca2+]0

2.0 × 10−5

4
[H2CO3]0 + [H+]0

k2([CO2(aq)]∞ − [CO2(aq)]0) 1.4 × 10−3

5
[H2CO3]0

k2[CO2(aq)]0 5.0 × 10−2

6
1

k−5
1.0 × 103

O(10−2 s) and Ca2+ reaches equilibrium in O(103 s). Therefore, in practice, the
rates of the first four reactions will be determined by the neglected transport
and mixing processes, and may be assumed to be in local equilibrium as
described by equations (5.1a–d). The reaction with calcium takes longer, and
in practice will therefore be determined by transport, mixing and reaction
processes. In dimensional terms, its evolution in the well-mixed scenario is given
by equation (A 25),

[Ca2+] ≈ [Ca2+]0 + ([CaCO3]0 − K5[Ca2+]0[CO2−
3 ]∞)(1 − exp(−k−5t)).

The results obtained above remain valid while the six time scales remain
distinct, i.e.

1
k1 + k−1


 [H+]0
k3([H+]0 + [H2CO3]0) 
 [CaCO3]0

k4K5[HCO−
3 ]0[Ca2+]0


 [H2CO3]0 + [H+]0
k2([CO2(aq)]∞ − [CO2(aq)]0) 
 [H2CO3]0

k2[CO2(aq)]0 
 1
k−5

. (5.3)

The validity of the model can therefore be assessed under different initial
concentrations, and under different conditions (temperature, pressure, salinity,
surface area, etc.), via the impact on the rate constants, provided this ordering
is preserved.

6. Discussion

We have formulated a nonlinear mathematical model of reactions (1.1) following
an instantaneous injection of CO2(g) into a dilute system, based on the mass
action law. We have also used the method of matched asymptotic expansions to
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1278 M. J. Mitchell et al.

derive leading-order approximations to the solutions of equations (1.1), which
agree closely with numerical simulations (figure 1). We identified six distinct
time scales within this system (table 5), over which there are different dominant
balances of terms. Both the transient evolution (appendix B) and the ultimate
equilibria (5.1) can be captured by a remarkably simple but non-trivial set of
functions in terms of the initial concentrations and equilibrium constants only.
For example, we are able to predict explicitly the level of acidification arising
from gaseous CO2 injection (5.2).

The full nonlinear model, when expressed in dimensionless variables, comprises
a set of five ODEs with 14 independent parameters. We chose one of these (1/α)
as the small parameter around which we constructed an asymptotic expansion.
We assigned to all the remaining parameters a power of α (table 4), and formally
took the distinguished limit in which the parameters varied proportionally to
the appropriate power of α (even though these relationships may not have
physical justification). In the limit α → ∞, the six resulting time scales become
increasingly widely separated in magnitude, and the asymptotic approximation
should converge to the exact solution of the ODEs. In practice, we make this
comparison at a finite, but large, value of α (using physically realistic parameter
values), still demonstrating good agreement. To extend the present approximation
to other parameter regimes (such as different temperatures and pressures, or
smaller initial injections of CO2(g), for which α is smaller in magnitude), it
is essential that the six time scales (stated in physical variables in table 5)
remain reasonably widely separated. In the present example, the closeness of
the expressions for time scales 4 and 5 indicates where the present approximation
may first break down.

At 25◦C and 1 atm, the first five time scales are rapid (less than 1 s), and
mixing processes not captured in the present model are likely to be rate-
limiting, particularly for the extremely rapid dissolution of CO2 (time scale 1).
In this well-mixed system, however, the reaction with calcium is ultimately
rate-limiting. The present model provides a useful foundation on which to build
more sophisticated multi-scale models, incorporating, for example, additional
reactions that buffer pH, interactions with dissolved salt, catalysts or other metals
(such as olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4)), as well as spatial
effects relevant to aquifers or other applications.

This study was supported by EPSRC grant EP/F012098/1.

Appendix A

A.1. Time scale 1: t̄ = O(α−3/2)

Writing B = α−1/2B̂, D = α−2D̂, F = α−5/2F̂ , G = α−7/2Ĝ, H = α−21/4Ĥ and
t̄ = α−3/2t̂ gives the following leading-order behaviour of equations (2.9) on this
time scale as α → ∞:

dB̂

dt̂
= 1 − (γ̂ + ν̂)B̂, (A 1a)

dD̂

dt̂
= B̂, (A 1b)
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A model of CO2 dissolution 1279

dF̂

dt̂
= ψ̂D̂, (A 1c)

dĜ

dt̂
= −χ̂ η̂

μ̂
F̂ (A 1d)

and
dĤ

dt̂
= −τ̂ Ĝλ̂, (A 1e)

with B̂ = D̂ = F̂ = Ĝ = Ĥ = 0 at t̂ = 0. B̂ equilibrates rapidly, with changes in the
remaining variables slaved sequentially to this. Equations (A 1) have the solutions

B̂ = 1

Ω̂
(1 − exp(−Ω̂ t̂)), (A 2a)

D̂ = 1

Ω̂

(
t̂ + exp(−Ω̂ t̂) − 1

Ω̂

)
, (A 2b)

F̂ = ψ̂

Ω̂

(
t̂

2

2
− t̂

Ω̂
− exp(−Ω̂ t̂) − 1

Ω̂2

)
, (A 2c)

Ĝ = −χ̂ η̂ψ̂

Ω̂μ̂

(
t̂

3

6
− t̂

2

2Ω̂
+ t̂

Ω̂2
+ exp(−Ω̂ t̂) − 1

Ω̂3

)
(A 2d)

and Ĥ = τ̂ λ̂χ̂ η̂ψ̂

Ω̂μ̂

(
t̂

4

24
− t̂

3

6Ω̂
+ t̂

2

2Ω̂2
− t̂

Ω̂3
− exp(−Ω̂ t̂) − 1

Ω̂4

)
, (A 2e)

where Ω̂ ≡ γ̂ + ν̂. The species evolve in successively higher powers of time, as
expected from figure 1c. Examination of the neglected terms in equations (A 1)
reveals that these approximations are valid until t̂ reaches O(α1/2), i.e. t̄ = O(α−1),
at which time B̂ = O(1), D̂ = O(α1/2), F̂ = O(α), Ĝ = O(α3/2) and Ĥ = O(α2). The
leading-order large-time limits of these variables, valid for α−3/2 
 t̄ 
 α−1 (i.e.
between time scales t1 and t2), form the initial conditions for the next time scale.
These limits are, in dimensionless unscaled variables,

B ≈ α

γ + ν
, (A 3a)

D ≈ Bt̄, (A 3b)

F ≈ ψBt̄ 2

2
, (A 3c)

G ≈ −χηψBt̄ 3

6μ
(A 3d)

and H ≈ τλχηψBt̄ 4

24μ
. (A 3e)

Proc. R. Soc. A (2010)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 D

ec
em

be
r 

20
23

 



1280 M. J. Mitchell et al.

A.2. Time scale 2: t̄ = O(α−1)

We now define O(1) variables using B = α−1/2B̂, D = α−3/2D̂, F = α−3/2F̂ ,
G = α−2Ĝ, H = α−13/4Ĥ and t̄ = α−1t̂ to yield the following leading-order
reduction of equations (2.9):

0 = 1 − (γ̂ + ν̂)B̂, (A 4a)

dD̂

dt̂
= B̂ − ψ̂D̂ + ψ̂ δ̂

μ̂
F̂ , (A 4b)

dF̂

dt̂
= ψ̂D̂ − ψ̂ δ̂

μ̂
F̂ , (A 4c)

dĜ

dt̂
= −χ̂ η̂

μ̂
F̂ (A 4d)

and
dĤ

dt̂
= −τ̂ Ĝλ̂. (A 4e)

Therefore, B̂ = 1/(γ̂ + ν̂). Also, d(D̂ + F̂)/dt̂ = B̂, implying that D̂ = B̂t̂ − F̂ (the
constant of integration is zero, by matching with equations (A 3)). Substituting
this expression for D̂ into equation (A 4c), solving for F̂ and matching the
small-time limit of this expression with equation (A 3c), gives

F̂ = ψ̂B̂

⎛
⎝ t̂

�̂
+

exp
(
−�̂t̂

)
− 1

�̂2

⎞
⎠ and D̂ = B̂t̂ − ψ̂B̂

⎛
⎝ t̂

�̂
+

exp
(
−�̂t̂

)
− 1

�̂2

⎞
⎠,

where �̂ ≡ ψ̂ + ψ̂ δ̂/μ̂. Likewise, solving equations (A 4d,e) and matching with
equations (A 3d,e) give

Ĝ = −χ̂ η̂ψ̂B̂
μ̂

(
t̂
2

2�̂
− t̂

�̂2
− exp(−�̂t̂) − 1

�̂3

)

and

Ĥ = τ̂ λ̂χ̂ η̂ψ̂B̂
μ̂

(
t̂

3

6�̂
− t̂

2

2�̂2
+ t̂

�̂3
+ exp(−�̂t̂) − 1

�̂4

)
.

Again, looking at the largest neglected terms in equations (A 4), we find that
these approximations are valid until t̂ reaches O(α1/4), at which time B̂ = O(1),
D̂ = O(α1/4), F̂ = O(α1/4), Ĝ = O(α1/2) and Ĥ = O(α3/4). The leading-order large-
time limits of these variables, valid for α−1 
 t̄ 
 α−3/4 (i.e. between time
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A model of CO2 dissolution 1281

scales t2 and t3), form the initial conditions for the next time scale. These limits
are (A 3a) plus

D ≈ Bt̄δ
μ + δ

, (A 5a)

F ≈ Bt̄μ
μ + δ

, (A 5b)

G ≈ −χηBt̄ 2

2(μ + δ)
(A 5c)

and H ≈ τλχηBt̄ 3

6(μ + δ)
, (A 5d)

broadly consistent with the exponents ΨB ≈ 0, ΨD ≈ 1, ΨF ≈ 1, ΨG ≈ 2 and ΨH ≈ 3
for t2 
 t̄ 
 t3 in figure 1c.

A.3. Time scale 3: t̄ = O(α−3/4)

On this time scale, we define O(1) variables using B = α−1/2B̂, D = α−5/4(D̂0 +
α−1/4D̂1 + · · · ), F = α−5/4(F̂ 0 + α−1/4F̂ 1 + · · · ), G = α−3/2Ĝ, H = α−5/2Ĥ and
t̄ = α−3/4t̂, to yield the following reduction of equations (2.9):

dD̂0

dt̂
= B̂ − ψ̂(α1/4D̂0 + D̂1) + ψ̂ δ̂

η̂
F̂ 0

+ ψ̂ δ̂

μ̂
(α1/4F̂ 0 + F̂ 1 + 2Ĝ) + O(α−1/4), (A 6a)

dF̂ 0

dt̂
= ψ̂(α1/4D̂0 + D̂1) − ψ̂ δ̂

η̂
F̂ 0 − ψ̂ δ̂

μ̂
(α1/4F̂ 0 + F̂ 1 + 2Ĝ) + O(α−1/4),

(A 6b)

dĜ

dt̂
= −χ̂ η̂τ̂ λ̂

ρ̂κ̂
Ĝ − χ̂ η̂

μ̂
F̂ 0 + O(α−1/4) (A 6c)

and
dĤ

dt̂
= −τ̂ Ĝλ̂ + O(α−1), (A 6d)

with B̂ = 1/(γ̂ + ν̂) as in equation (A 4a). As the left-hand sides of equations
(A 6a,b) are O(1), the O(α1/4) terms on the right-hand sides must sum to zero, i.e.

−ψ̂D̂0 + ψ̂ δ̂

μ̂
F̂ 0 = 0. (A 7)
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1282 M. J. Mitchell et al.

In the limit α → ∞, the leading-order behaviour of equations (A 6) on this time
scale is given by equations (A 6c,d) plus

dD̂0

dt̂
= B̂ − ψ̂D̂1 + ψ̂ δ̂

η̂
F̂ 0 + ψ̂ δ̂

μ̂

(
F̂ 1 + 2Ĝ

)
(A 8a)

and

dF̂ 0

dt̂
= ψ̂D̂1 − ψ̂ δ̂

η̂
F̂ 0 − ψ̂ δ̂

μ̂

(
F̂ 1 + 2Ĝ

)
. (A 8b)

Therefore, d(D̂0 + F̂ 0)/dt̂ = B̂, implying D̂0 = B̂t̂ − F̂ 0 (matching with
equations (A 5a,b)). Substituting this into equation (A 7) gives

D̂0 = B̂t̂ δ̂

μ̂ + δ̂
(A 9a)

and

F̂ 0 = B̂t̂μ̂

μ̂ + δ̂
. (A 9b)

Substituting equation (A 9b) into equation (A 6c), and solving for Ĝ gives

Ĝ = Λ̂2Γ̂

χ̂ η̂

(
1 − exp

(
−χ̂ η̂t̂

Λ̂

))
− Λ̂Γ̂ t̂,

where Γ̂ ≡ B̂/(μ̂ + δ̂) and Λ̂ ≡ ρ̂κ̂/τ̂ λ̂. Ĥ is given by

Ĥ = −τ̂ λ̂
Λ̂2Γ̂

χ̂ η̂

(
t̂ + Λ̂

χ̂ η̂
exp

(
−χ̂ η̂t̂

Λ̂

))
+ τ̂ λ̂Λ̂Γ̂

t̂
2

2
+ τ̂ λ̂Λ̂3Γ̂

χ̂2η̂2
.

The constants of integration for Ĝ and Ĥ can be deduced by matching with
equations (A 5c,d). The neglected terms in equations (A 6) indicate that these
approximations are valid until t̂ reaches O(α1/4), at which point, B̂ is O(1), D̂,
F̂ and Ĝ are O(α1/4), and Ĥ is O(α1/2). The leading-order large-time limits of
these variables, valid for α−3/4 
 t̄ 
 α−1/2 (i.e. between time scales t3 and t4),
are given by equations (A 3a), (A 5a,b),

G ≈ −ρκBt̄
τλ(μ + δ)

and H ≈ ρκBt̄ 2

2(μ + δ)
, (A 10)

consistent with ΨG ≈ 1, ΨH ≈ 2 in figure 1c (although these exponents do not
exhibit clear plateaux for t3 
 t̄ 
 t4).

A.4. Time scale 4: t̄ = O(α−1/2)

On the next time scale, we define O(1) variables using B = α−1/2B̂, with
B̂ = 1/(γ̂ + ν̂), D = α−1(D̂0 + α−1/4D̂1 + α−1/2D̂2 + · · · ), F = α−1(F̂ 0 + α−1/4F̂ 1 +
α−1/2F̂ 2 + · · · ), G = α−5/4(Ĝ0 + α−1/4Ĝ1 + · · · ), H = α−2Ĥ and t̄ = α−1/2t̂.
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A model of CO2 dissolution 1283

Similarly to time scale 3, the resulting O(α1/2) terms in the ODEs for D and
F must sum to zero, which gives equation (A 7), as must the O(α1/4) terms in
the ODEs for D, F and G, which give

−ψ̂D̂1 + ψ̂ δ̂

η̂μ̂
F̂ 0(μ̂ + F̂ 0) + ψ̂ δ̂

μ̂
(F̂ 1 + 2Ĝ0) = 0 (A 11a)

and

χ̂ η̂ − χ̂ η̂

μ̂

(
τ̂ λ̂

ρ̂κ̂
Ĝ0 + 1

)
(μ̂ + F̂ 0) = 0. (A 11b)

Then, in the limit α → ∞, the leading-order behaviour is given by

dD̂0

dt̂
= B̂ − ψ̂D̂2 + ψ̂ δ̂

η̂μ̂
(2F̂ 0F̂ 1 + 2F̂ 0Ĝ0 + F̂ 1μ̂ + η̂(F̂ 2 + 2Ĝ1)), (A 12a)

dF̂ 0

dt̂
= ψ̂D̂2 − ψ̂ δ̂

η̂μ̂
(2F̂ 0F̂ 1 + 2F̂ 0Ĝ0 + F̂ 1μ̂ + η̂(F̂ 2 + 2Ĝ1)), (A 12b)

dĜ0

dt̂
= χ̂ F̂ 0 − χ̂ η̂

μ̂

(
τ̂ λ̂

ρ̂κ̂
Ĝ0 + 1

)
(F̂ 1 + 2Ĝ0) − χ̂ η̂τ̂ λ̂

μ̂ρ̂κ̂
Ĝ1(μ̂ + F̂ 0) (A 12c)

and
dĤ

dt̂
= −τ̂ Ĝ0λ̂. (A 12d)

Therefore, d(D̂0 + F̂ 0)/dt̂ = B̂, and so D̂0 = B̂t̂ − F̂ 0. This, together with
equation (A 7), gives equations (A 9). Substituting equation (A 9b) into
equation (A 11b) gives

Ĝ0 = −ρ̂κ̂B̂t̂

τ̂ λ̂(μ̂ + δ̂ + B̂t̂)
≈ −ρ̂κ̂

τ̂ λ̂

(
1 − μ̂ + δ̂

B̂t̂
+ · · ·

)
for t̂ � 1, (A 13a)

and substituting equation (A 13a) into equation (A 12d) gives

Ĥ = ρ̂κ̂ t̂ − ρ̂κ̂(μ̂ + δ̂)

B̂
ln

(
μ̂ + δ̂ + B̂t̂

μ̂ + δ̂

)
, (A 13b)

which match with equations (A 10) for t̂ 
 1. These approximations are valid
until t̂ reaches O(α1/4), at which point B̂ and Ĝ are O(1), and D̂, F̂ and Ĥ are
O(α1/4). The large-time limits of these variables, valid for α−1/2 
 t̄ 
 α−1/4 (i.e.
between time scales t4 and t5), and consistent with ΨG ≈ 0, ΨH ≈ 1, are given by
equations (A 3a), (A 5a,b), plus

G ≈ −ρκ

τλ
+ ρκ(μ + δ)

τλBt̄
and H ≈ ρκ t̄. (A 14)
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1284 M. J. Mitchell et al.

A.5. Time scale 5: t̄ = O(α−1/4)

On this time scale, we define O(1) variables using B = α−1/2B̂, with B̂ =
1/(γ̂ + ν̂), D = α−3/4(D̂0 + α−1/4D̂1 + α−1/2D̂2 + α−3/4D̂3 + · · · ), F = α−3/4(F̂ 0 +
α−1/4F̂ 1 + α−1/2F̂ 2 + α−3/4F̂ 3 + · · · ), G = α−5/4(Ĝ0 + α−1/4Ĝ1 + α−1/2Ĝ2 + α−3/4

Ĝ3 + · · · ), H = α−7/4Ĥ and t̄ = α−1/4t̂. The O(α3/4) terms in the ODEs for D,
F and G give

−ψ̂D̂0 + ψ̂ δ̂

η̂μ̂
(F̂ 0 + η̂)F̂ 0 = 0 (A 15a)

and

− χ̂ η̂

μ̂

(
τ̂ λ̂

ρ̂κ̂
Ĝ0 + 1

)
F̂ 0 = 0, (A 15b)

the O(α1/2) terms give

−ψ̂(D̂1 + δ̂) + ψ̂ δ̂

η̂μ̂

(
(F̂ 0 + η̂)(μ̂ + F̂ 1) + F̂ 1F̂ 0

)
= 0 (A 16a)

and

χ̂(F̂ 0 + η̂) − χ̂ η̂

μ̂

(
τ̂ λ̂

ρ̂κ̂
Ĝ0 + 1

)
(μ̂ + F̂ 1) − χ̂ η̂τ̂ λ̂

μ̂ρ̂κ̂
Ĝ1F̂ 0 = 0, (A 16b)

and the O(α1/4) terms give

−ψ̂D̂2 + ψ̂ δ̂

η̂μ̂
((F̂ 0 + η̂)(F̂ 2 + 2Ĝ0) + F̂ 1(μ̂ + F̂ 1) + F̂ 2F̂ 0) = 0 (A 17a)

and

χ̂ F̂ 1 − χ̂ η̂

μ̂

(
τ̂ λ̂

ρ̂κ̂
Ĝ0 + 1

)
(F̂ 2 + 2Ĝ0) − χ̂ η̂τ̂ λ̂

μ̂ρ̂κ̂
(Ĝ1(μ̂ + F̂ 1) + Ĝ2F̂ 0) = 0. (A 17b)

Then, the leading-order behaviour on this time scale is given by

dD̂0

dt̂
= B̂ − β̂

δ̂
D̂0 − ψ̂D̂3 + ψ̂ δ̂

η̂μ̂
((F̂ 0 + η̂)(F̂ 3 + 2Ĝ1) + F̂ 1(F̂ 2 + 2Ĝ0)

+ F̂ 2(μ̂ + F̂ 1) + F̂ 3F̂ 0), (A 18a)
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A model of CO2 dissolution 1285

dF̂ 0

dt̂
= ψ̂D̂3 − ψ̂ δ̂

η̂μ̂
((F̂ 0 + η̂)(F̂ 3 + 2Ĝ1)

+ F̂ 1(F̂ 2 + 2Ĝ0) + F̂ 2(μ̂ + F̂ 1) + F̂ 3F̂ 0), (A 18b)

dĜ0

dt̂
= χ̂ F̂ 2 − χ̂ η̂

μ̂

(
τ̂ λ̂

ρ̂κ̂
Ĝ0 + 1

)
(F̂ 3 + 2Ĝ1) − χ̂ η̂τ̂ λ̂

μ̂ρ̂κ̂
(Ĝ1(F̂ 2 + 2Ĝ0)

+ Ĝ2(μ̂ + F̂ 1) + Ĝ3F̂ 0) (A 18c)

and
dĤ

dt̂
= −τ̂ Ĝ0λ̂. (A 18d)

Therefore, d(D̂0 + F̂ 0)/dt̂ = B̂ − (β̂/δ̂)D̂0, and from equation (A 15a), the
evolution of D̂ and F̂ on this time scale is given by

dF̂ 0

dt̂
= B̂η̂μ̂ − β̂F̂

2
0 − β̂η̂F̂ 0

2δ̂F̂ 0 + δ̂η̂ + μ̂η̂
(A 19a)

and

D̂0 = δ̂

η̂μ̂
(F̂ 0 + η̂)F̂ 0, (A 19b)

and so F̂ 0 has the implicit solution

t̂ =
(

−η̂μ̂

2β̂Ξ̂
− δ̂

β̂

)
ln

(
F̂ 0 + η̂/2 − Ξ̂

η̂

2 − Ξ̂

)
+

(
η̂μ̂

2β̂Ξ̂
− δ̂

β̂

)
ln

(
F̂ 0 + η̂/2 + Ξ̂

η̂/2 + Ξ̂

)
,

(A 20)

where Ξ̂ ≡
√

(η̂2/4) + (B̂η̂μ̂/β̂). From equations (A 15b), (A 16b) and (A 18d ),

respectively, the evolution of Ĝ and Ĥ is given by

Ĝ0 = −ρ̂κ̂

τ̂ λ̂
, (A 21a)

Ĝ1 = μ̂ρ̂κ̂(F̂ 0 + η̂)

η̂τ̂ λ̂F̂ 0
(A 21b)

and Ĥ = ρ̂κ̂ t̂. (A 21c)
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1286 M. J. Mitchell et al.

Thus, D̂, F̂ and Ĝ rapidly equilibrate for t̂ � 1, and Ĥ evolves linearly in
time, consistent with figure 1c. As F̂ 0 → 0 as t̂ → 0, the small-time limits of
equations (A 19) and (A 21b) are

dF̂ 0

dt̂
≈ B̂μ̂

δ̂ + μ̂
, (A 22a)

D̂0 ≈ δ̂F̂ 0

μ̂
(A 22b)

and Ĝ1 ≈ μ̂ρ̂κ̂

τ̂ λ̂F̂ 0
≈ ρ̂κ̂(μ̂ + δ̂)

τ̂ λ̂B̂t̂
, (A 22c)

ensuring matching with equations (A 9) and (A 14). These approximations are
valid until t̂ reaches O(α1/2), at which point, B̂, D̂, F̂ and Ĝ are O(1), and Ĥ
is O(α1/2). The large-time limits for D and F , valid for α−1/4 
 t̄ 
 α1/4 (i.e.
between time scales t5 and t6), are

D ≈ δ

β
B (A 23a)

and

F ≈ −η

2
+

√
η2

4
+ ημ

β
B. (A 23b)

The corresponding large-time limits of G and H are

G ≈ −ρκ

τλ
+ μρκ(F + η)

ητλF
(A 23c)

and

H ≈ ρκ t̄, (A 23d)

(with F satisfying equation (A 23b)), consistent with ΨB = ΨD = ΨF = ΨG = 0
and ΨH ≈ 1.

A.6. Time scale 6: t̄ = O(α1/4)

On this final time scale, we define O(1) variables B = α−1/2B̂, with B̂ =
1/(γ̂ + ν̂), D = α−3/4(D̂0 + α−1/4D̂1 + α−1/2D̂2 + α−3/4D̂3 + · · · ), F = α−3/4(F̂ 0 +
α−1/4F̂ 1 + α−1/2F̂ 2 + α−3/4F̂ 3 + · · · ), G = α−5/4(Ĝ0 + α−1/4Ĝ1 + α−1/2Ĝ2 + α−3/4

Ĝ3 + · · · ), H = α−5/4Ĥ and t̄ = α1/4t̂. Substituting these expansions into
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A model of CO2 dissolution 1287

equations (2.9) gives identities (A 15–A 17). Also, O(1) balances are given by

0 = B̂ − β̂

δ̂
D̂0 − ψ̂D̂3 + ψ̂ δ̂

η̂μ̂
((F̂ 0 + η̂)(F̂ 3 + 2Ĝ1) + F̂ 1(F̂ 2 + 2Ĝ0)

+ F̂ 2(μ̂ + F̂ 1) + F̂ 3F̂ 0),

0 = ψ̂D̂3 − ψ̂ δ̂

η̂μ̂
((F̂ 0 + η̂)(F̂ 3 + 2Ĝ1) + F̂ 1(F̂ 2 + 2Ĝ0)

+ F̂ 2(μ̂ + F̂ 1) + F̂ 3F̂ 0)

and 0 = χ̂ F̂ 2 − χ̂ η̂

μ̂

(
τ̂ λ̂

ρ̂κ̂
Ĝ0 + 1

)
(F̂ 3 + 2Ĝ1) − χ̂ η̂τ̂ λ̂

μ̂ρ̂κ̂
(Ĝ1(F̂ 2 + 2Ĝ0)

+ Ĝ2(μ̂ + F̂ 1) + Ĝ3F̂ 0).

Therefore, the solutions to D, F and G on this time scale are given by
equations (A 23a–c). Also,

dĤ

dt̂
= −τ̂ (Ĝ0 + α−1/4Ĝ1)λ̂ − ρ̂Ĥ + O(α−1/2), (A 24)

and the solution to equation (A 24), which includes the first correction term for
G and matches with equation (A 23d), is

Ĥ =
(

κ̂ − μ̂κ̂(F̂ 0 + η̂)

η̂F̂ 0

)
(1 − exp(−ρ̂ t̂)). (A 25)

Thus, for t̄ � α1/4, the large-time limits are equations (A 3a), (A 23a–c) and

H ≈ κ − μκ(F + η)
ηF

(A 26)

(with F satisfying equation (A 23b)).

Appendix B

The combined expressions for the five species, given below, are plotted in
figure 1b. Wherever possible, they are constructed by summing the different time
scales’ approximations, and subtracting the intervening large-time limits, to give
composite asymptotic formulae. Otherwise, the expressions have been patched
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1288 M. J. Mitchell et al.

together to provide a good fit to the full simulations as follows:

B = α

Ω
(1 − exp(−Ω t̄)),

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

Ω

(
t̄ + exp(−Ω t̄) − 1

Ω

)
− ψB

(
t̄
�

+ exp(−�t̄) − 1
�2

)
, if t̄ < α−7/8,

Bt̄δ
μ + δ

, if α−7/8 < t̄ < α−3/8,

δ

ημ
(F + η)F , if α−3/8 < t̄ < α−2/8,

δ

β
B, if α−2/8 < t̄,

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αψ

Ω

(
t̄ 2

2
− t̄

Ω
− exp(−Ω t̄) − 1

Ω2

)

−ψBt̄ 2

2
+ ψB

(
t̄
�

+ exp
(−�t̄

) − 1
�2

)
, if t̄ < α−7/8,

Bt̄μ
μ + δ

, if α−7/8 < t̄ < α−3/8,

F̃(t̄), if α−3/8 < t̄ < α−2/8,

−η

2
+

√
η2

4
+ ημ

β
B, if α−2/8 < t̄,

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−αχηψ

Ωμ

(
t̄ 3

6
− t̄ 2

2Ω
+ t̄

Ω2
+ exp(−Ω t̄) − 1

Ω3

)

+χηψBt̄ 3

6μ
− χηψB

μ

(
t̄ 2

2�
− t̄

�2
− exp(−�t̄) − 1

�3

)

+ χηBt̄ 2

2(μ + δ)
+ θ2B

χη(μ + δ)

(
1 − exp

(−χηt̄
θ

))

− θBt̄
(μ + δ)

, if t̄ < α−5/8,

−θBt̄
μ + δ + Bt̄

, if α−5/8 < t̄ < α−3/8,

−θ + χ(F + η)
φF

, if α−3/8 < t̄,
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A model of CO2 dissolution 1289

and

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ατλχηψ

Ωμ

(
t̄ 4

24
− t̄ 3

6Ω
+ t̄ 2

2Ω2
− t̄

Ω3

− exp(−Ω t̄) − 1
Ω4

)
− τλχηψBt̄ 4

24μ

+τλχηψB
μ

(
t̄ 3

6�
− t̄ 2

2�2
+ t̄

�3
+ exp(−�t̄) − 1

�4

)

−τλχηBt̄ 3

6 (μ + δ)
− τλ

θ2B
χη(μ + δ)

(
t̄ + θ

χη
exp

(−χηt̄
θ

))

+ τλθBt̄ 2

2(μ + δ)
+ τλθ3B

χ2η2(μ + δ)
, if t̄ < α−5/8,

ρκ t̄ − ρκ(μ + δ)
B

(
ln(μ + δ + Bt̄) − ln(μ + δ)

)
, if α−5/8 < t̄ < α−3/8,

ρκ t̄, if α−3/8 < t̄ < α−1/8,

(
κ − μκ(F + η)

ηF

)
(1 − exp(−ρ t̄)), if α−1/8 < t̄,

where F̃(t̄) is given implicitly by

t̄ =
(−ημ

2βΞ
− δ

β

)
ln

(
F̃ + η/2 − Ξ

η/2 − Ξ

)
+

(
ημ

2βΞ
− δ

β

)
ln

(
F̃ + η/2 + Ξ

η/2 + Ξ

)
,

Ω ≡ γ + ν, � ≡ ψ + ψδ/μ and Ξ ≡ √
η2/4 + Bημ/β.
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